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We consider two basic types of Brownian motors which generate directed motion in a periodic asymmetric
piecewise-linear potential as a result of random half-period shifts of the potential relief �flashing ratchets� or
due to a temporally asymmetric unbiased force applied to the system �rocking ratchets�. Analytical relation-
ships have been derived which enable the comparison of the upper limits for the conventional and generalized
energy conversion efficiencies in these motors. As found, the increasing amplitude of a sawtooth potential �or
the decreasing temperature� makes the conventional efficiency tend to the unity limit faster for a rocking
ratchet �in the absence of temporal asymmetry� than for a flashing ratchet. The inverse is true for the gener-
alized efficiency. The potential amplitude being the same, the generalized efficiency is always less than the
conventional efficiency. A decreased asymmetry of the potential always results in the reduction of both effi-
ciencies. The temporal asymmetry of an unbiased force has an opposite effect on the conventional and gener-
alized efficiencies: the former rises and the latter drops as the positive signal component becomes shorter in
time and larger in amplitude.
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I. INTRODUCTION

Efficiency is a characteristic of paramount importance for
a Brownian motor which invokes nonequilibrium fluctua-
tions in asymmetric media to generate directed motion of
Brownian particles. A strict thermodynamic definition of this
quantity implies that a motor performs the useful work
against an external load force F. The conventional efficiency
is just specified by the ratio of the useful work performed to
the total energy expended �1–3�, and it has been extensively
and thoroughly studied for various flashing and rocking
ratchet models in an effort to ascertain the necessary condi-
tions for maximizing its value �2,4–16�. On the other hand, it
is often stated, with good reason �17–21�, that nanodevices
converting the energy of chemical reactions into the energy
of directed motion are remarkable first and foremost not for
their ability to do work against external forces but for the
very fact of generating directed motion. The directedness
originates from the rectification of the nonequilibrium noise
which can be characterized by a certain rectification effi-
ciency. To explicitly express such an efficiency, one can em-
ploy various approaches—for instance, the thermodynamic
minimality principle for the useful work performed by the
motor �17� or an energy balance based on the averages of the
separate terms that make up the Langevin equation without
the overdamped approximation for flashing �19� and rocking
�20� ratchets. The resulting expression is

�r =
F�s� + ��s�2

Win
, �1�

where �s� is the average velocity of directed motion, � is the
friction coefficient, and Win is the work expended in unit

time. In what follows, we call this quantity the generalized
efficiency so as to emphasize its more general behavior.
Thus, the generalized efficiency differs from the conven-
tional one by an additional addend in the numerator ��s�2,
which accounts for the work done by friction forces on a
particle in unit time. This work is regarded as useful and
increases the value of the generalized efficiency as against
the conventional efficiency. Importantly, at F=0 it is the ad-
dend in question that represents the only useful work pro-
duced by the motor and thus prevents the efficiency in Eq.
�1� from becoming zero.

The sought-for quantities �s� and Win are most conve-
niently found within the overdamped approximation using
the Smoluchowski equation as an evolution equation. As an
example, if two states �=± characterized by the potential
energies U��x� randomly switch with frequency �, then a
probability ���x , t� to find the particle in the state � near the
point x at the moment t is specified by the equation

����x,t�
�t

= −
�

�x
J��x,t� − ����+�x,t� − �−�x,t�� . �2�

Here

J��x,t� = − De−�U��x� �

�x
�e�U��x����x,t�� �3�

is the corresponding probability current, �= �kBT�−1, kB is the
Boltzmann constant, T is the absolute temperature, and
D= ����−1 is the diffusion coefficient. Depending on the
model, the potential energies U��x� can include a fluctuating
periodic contribution V��x� �flashing ratchet� or the sum of
constant periodic V�x� and fluctuating nonperiodic −F1�x
contributions with the fluctuating force F1� �rocking ratchet�
as well as the contribution Fx of the load force F. In the*vrozen@mail.kar.net
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steady state, the total flux J=J+�x�+J−�x� is constant and
determines the average velocity �s�=JL �where L is the po-
tential period�, and the quantity Win is given by the expres-
sion �6�

Win = ��
0

L

�U+�x� − U−�x����−�x� − �+�x��dx . �4�

�A definition of Win, without regard to the overdamped ap-
proximation, is presented in �19,20�.� For deterministic
switches between two states, Eq. �2� without the last addend
should be solved separately on each time interval, with the
solutions coinciding at the moments of potential switches. In
this case, the values �s� and Win are found by averaging the
corresponding expressions over all the time intervals.

Although a large diversity of highly efficient models of
Brownian motors are available in the literature, their effi-
ciencies have been hitherto calculated, as a rule, numerically
with some selected parameter sets, whereas an analytical
treatment has only been possible for the maximum values of
the conventional efficiency regarded as a function of many
variables. At the same time, there has been an increasing
interest in the generalized efficiency of nanodevices, which
calls for a systematic comparative analysis of both efficiency
types and elucidation of their upper limits for various
Brownian motor models. This problem is addressed in the
present study.

It is, therefore, expedient to consider the same potential
type in comparing the conventional and generalized efficien-
cies for the flashing and rocking ratchet models using the
overdamped approximation. In this study, we involve a peri-
odic asymmetric piecewise-linear potential �see Fig. 1�
which affords, at the extreme degree of asymmetry, the high-
est efficiencies of both types �12,14�. Section II is devoted to
the calculation of the generalized efficiency in such an ex-
tremely asymmetric potential for the flashing ratchet; thus,
we complement the previous investigation �12� in which the
conventional efficiency was calculated under analogous con-
ditions. In Sec. III, the efficiencies of both types are found

for the rocking ratchet. The concluding section presents a
detailed juxtaposition of the results gained for the two motor
models in terms of the conventional and generalized efficien-
cies.

II. FLASHING RATCHET

An efficiency analysis of flashing ratchets demonstrates
that the most promising models are those in which the peri-
odic potential fluctuates via half-period shifts and the poten-
tial relief on both half-periods is the same, though differently
placed with respect to the energy axis. If this energy shift is
compensated by a load force, the conventional efficiency
reaches its maximum because a switch between the poten-
tials is not accompanied by the energy losses which arise
from the particle transition between the states with different
potential reliefs �10,12�. If the reverse motion of the
particle is locked by an additional narrow �l0→0� and high
�V0→ � � barrier, then the fulfillment of the conditions
V0l0→0 and �l0 /L�exp��V0��1 implies that the conven-
tional efficiency approaches unity as

� → �� − �L/2l0 exp�− �V0/2� , �5�

with ��=1 �10�. Importantly, the limiting expression ob-
tained is independent of the potential shape and holds in a
wide range of potential switching frequencies �. Strictly
speaking, the regularity revealed is also valid at �→�, since
a periodic potential with the energy-shifted identical reliefs
on two half-periods can exist only provided that there are
discontinuities in its profile at the points x=L /2 and L. As-
suming that the jump of the potential by the value V occurs
within a region of a nonzero width l, the frequency range is
restricted by the condition ��D��V / l�2.

With the rising barrier height V0, the generalized effi-
ciency displays the same limiting behavior, with the only
difference that the value �� is under unity and depends on
the model parameters. The smaller efficiency value results
from the absence of a load force: the energy shift between
the identical potential reliefs on both half-periods cannot be
compensated and hence certain energy losses arise. Nonethe-
less, the value of �� goes to unity if the condition 	
	�L2 /D�1 is met and provided that the characteristic
height of the potential relief V satisfies the inequality v2�	,
where v=�V. It follows from exact analytical relations �10�
that the above inference holds true for an arbitrary shape of
the potential relief on a half-period. In the particular case of
an extremely asymmetric sawtooth potential �see Fig. 1 with
l→0�, the expression for �� appears as

�� = 
1 +
4
�cosh�v/4� + cosh 
�

	 sinh 

�−1

, �6�

where 
=�v2+8	 /4. At 	→�, the value of �� tends to
unity as 1−�8/	.

In the absence of an additional barrier, the reverse particle
motion is locked due to the peculiar shape of the potential
relief. For an extremely asymmetric sawtooth potential, the
locking is governed by the parameter V. The conventional
efficiency dependent on V is a function of both the potential

FIG. 1. The potential energy profiles involved in the treatment.
At l→0, a periodic sawtooth potential becomes extremely asym-
metric, thus affording the optimum characteristics of the Brownian
motor. In this case, the potential on the half-period �0,L /2� is the
same as on the half-period �L /2, L�, with the vertical displacement
V /2. The dashed lines designate a narrow and high potential barrier
�l0→0, V0→� at V0l0→0 but �l0 /L�exp��V0��1� which locks the
reverse particle motion in a flashing ratchet.
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switching frequency � and the load force F. The maximum
of the function � with respect to the variables � and F is
given by the relation �12�

�max � 1 − 2
ln v
v

, v � 1, �7�

at

	 � 4
ln v
v

, F �
V

L
�max, l = 0. �8�

It is noteworthy that the maximum efficiency is reached at so
large load forces that the corresponding average velocity is
small and equal to �s�→ �2/��L��ln v /v�. As a consequence,
the values of the conventional and generalized efficiencies
differ by a small value of the order ��s� /F��2/v2�ln v and
practically coincide at their maximum specified by Eq. �7�.

From the previously reported relationships �12�, one can
also define the quantity Win needed to calculate the general-
ized efficiency �1�. Setting F=0 and l=0, we write the exact
expression

�r =
2A2

	 sinh�v/2��exp�v/2� − 1��Z1B − Z2A�
, �9�

where

A = ��0 exp�v/2� − �L��cosh�v/2� − 1� ,

B = �0 exp�v/2�cosh�v/2� + �L,

Z1 =
16

v2 sinh2�v/4�, Z2 =
4

v2 �exp�v/2� − 1 − �v/2�� ,

�0,L =
1

4 sinh 

4
�exp��v/4� + cosh 
� � v sinh 
� ,


 =
1

4
�v2 + 8	 . �10�

At v, 	�1, Eqs. �9� and �10� are simplified, so that the
desired efficiency takes the following approximate form:

�r �
2v�z − 1�

v�z2 − 1� + 2�z + 1�
, z = �1 + 8	/v2. �11�

The function �r�z� assumes the maximum value

�r
max =

v

��2 + �v + 2�2
�12�

at

	 =
1

2
v2�� 2

v + 2
+

2

v + 2
� . �13�

Interestingly, the maximum value of unity is reached for the
conventional efficiency at small potential switching frequen-
cies and for the generalized efficiency at large frequencies. In
the limit v→�, we obtain the expression �r

max→1−2�2/v
which goes to unity slower than formula �7�.

III. ROCKING RATCHET

Rocking ratchets generate the directed motion of a
Brownian particle not only due to the asymmetry of a peri-
odic potential but also by means of a temporally asymmetric
unbiased force �22�:

F1�t� = 
F1, n� � t � n� + �1 − ���/2,

− F1, n� + �1 − ���/2 � t � �n + 1�� ,
�14�

where the parameters � and 	�1+�� / �1−�� signify the
temporal asymmetry �0���1�, � is the period of the driv-
ing force F1�t�, and n is an integer �see Fig. 2�. Expression
�14� leads the average value of the force F1�t� to reduce to
zero. In addition to this force, the load force F should be
introduced for the conventional efficiency to be calculated.
Then the slopes of the linear sections in the sawtooth poten-
tial, 0�x� l and l�x�L �see Fig. 1�, become f+=V / l− f
and f−=−V / �L− l�− f , respectively, where the quantity f de-
fines the total external force F1−F and −F1−F acting on
the particle during the respective time intervals �1−��� /2
and �1+��� /2. In the adiabatic approximation, one can as-
sume that such time intervals are sufficient for equilibrium to
be established. Then the flux J0�f� within either interval ap-
pears as follows �14,23�:

�D�J0�f��−1 = −
l

f+
−

L − l

f−
+ �−1
 e�f−�L−l� − 1

f−
2 −

e−�f+l − 1

f−
2

+
1

e−�f+l − e�f−�L−l�� e�f−�L−l� − 1

f−

−
e−�f+l − 1

f−
�2� , �15�

whereas the average velocity of the Brownian particle, �s�,
and the energy expended in unit time Win are defined by the
relations �15�

�s� =
1

2
L�1 − ���J0�F1 − F� + J0�− F1 − F�� ,

Win =
1

2
F1�1 + ���J0�F1 − F� − J0�− F1 − F�� . �16�

The above formulas enable numerical calculation of the
conventional and generalized efficiencies in relation to vari-
ous parameters of the model �15,24�. At the same time, the
analysis of the maximum possible efficiencies calls for suf-

FIG. 2. The temporally asymmetric unbiased force giving rise to
directed motion of Brownian particles in a rocking ratchet.
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ficiently simple analytical expressions which enable a conve-
nient search for extremum values. First we consider the low-
temperature limit which is known to afford, at �=0, the
maximum conventional efficiency, with its value depending
on the spatial asymmetry parameter �	 l /L �14�. In this
case, the average velocity �s� assumes negative values, in
contrast to flashing ratchets for which �s� is positive. The
efficiency upper limits are obtainable from the evident con-
dition �J0�F1−F� � � �J0�−F1−F�� valid at f+=V / l−F1+F
→0—i.e., at F→F1−V / l. Thus, the upper limit of the con-
ventional efficiency is specified by the expression

�* = 1 −
1 + 


� . �17�

For the generalized efficiency, one should involve the low-
temperature asymptotic of the flux J0�F1� to obtain

�r
* =

1



�1 − �� − �

�1 − �� + 1 − 2�
. �18�

Note that �s� and both efficiencies become zero only if the
model has neither spatial ��=1/2� nor temporal �=1�
asymmetry. Figure 3 demonstrates the upper limits of both
efficiencies versus the spatial asymmetry parameter � at the
varied values of the temporal asymmetry parameter . It is
seen that the highest efficiencies are always reached at the
extremely asymmetric potential ��=0�. In this case, we have
�*=1 at any values of , whereas �r

*= �+1�−1 �if there is no
temporal asymmetry, then �r

*=1/2�.
Restricting our consideration to the case of the extremely

asymmetric potential, we now derive the relations which de-
scribe the tendency of the efficiencies to their upper limits in
the low-temperature region. Writing the asymptotic
expressions for the fluxes J0�F1−F� and J0�−F1−F� at
v=�V�1 and substituting � for F with regard to the rela-
tion F=F1−��V / l�, we find the conventional efficiency at
l→0:

��F1,�� � 1 − �
V

F1L
−

2� + 1�2

�� − 1�v
��F1L�2 exp�− v� .

�19�

The maximum of this function of two variables is found as

�max � 1 − 3�1 + −1�2/3�2v�1/3 exp�− v/3� . �20�

The generalized efficiency is given by the following func-
tion:

�r�F1� �
1

 + 1
�1 −

V

F1L
−

2 + 1


�F1L exp�− v�� ,

�21�

with the maximum

�r
max �

1

 + 1
�1 −

2


��2 + 1�v exp�− v/2�� . �22�

IV. CONCLUSIONS

We have considered two basic types of Brownian motors
which generate directed motion in a periodic asymmetric
piecewise-linear potential as a result of random half-period
shifts of the potential relief �flashing ratchets� or due to a
temporally asymmetric unbiased force applied to the system
�rocking ratchets�. We are concerned with the upper limits of
the generalized energy conversion efficiency represented by
relation �1� with and without an external load force F. The
generalized efficiency differs from the conventional one in
that the numerator in Eq. �1� contains, besides the useful
work F�s�, an additional addend ��s�2, which accounts for
the work done by friction forces on a particle in unit time.
The upper limit of the generalized efficiency at F�0 is re-
alized at so small values of the average velocity �s� that
��s�2�F�s� and the generalized efficiency is much the same
as the conventional efficiency. Thus, the analysis of the
maximum efficiency suggests the conventional or general-
ized efficiency according to whether the load force is present
or not. The former is significant if the motor functioning
implies the work against external forces, whereas the latter
characterizes the motors generating directed motion as such
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FIG. 3. The upper limits of the conventional �a� and generalized
�b� efficiencies for a rocking ratchet plotted versus the spatial asym-
metry parameter �	 l /L �see Fig. 1� at varied values of the tempo-
ral asymmetry parameter 	�1+�� / �1−�� �see Fig. 2�.
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and aimed at the maximum average velocity. The behavior of
the two efficiencies has many features in common: both of
them increase with the potential amplitude and asymmetry—
i.e., with the factors which are just responsible for the origi-
nation of directed motion. At the same time, some distinc-
tions between them are revealed which arise from the
method of directed motion generation and from the peculiari-
ties of the definition of useful work.

For a flashing ratchet, the most efficient energy conver-
sion occurs if a reverse particle flux is locked by an addi-
tional high and narrow barrier. In this case, the limiting low-
temperature behavior of the conventional and generalized
efficiencies is accounted for by Eqs. �5� and �6�; i.e., their
maximum values are reached most rapidly. In contrast, if an
additional high barrier were involved in the potential of a
rocking ratchet, it would result in a very low speed of the
particle flux. Therefore, the further comparative analysis of
the high-efficiency limits was performed for a periodic
asymmetric piecewise-linear potential without additional
barriers. Analytical relations �7�, �12�, �20�, and �22� dictate
how rapidly the maximum values of the conventional and
generalized efficiencies approach their upper limits with de-
creasing temperature �the corresponding plots are presented
in Fig. 4�. As seen, the increasing amplitude of a sawtooth
potential �or the decreasing temperature� makes the conven-
tional efficiency tend to the unity limit faster for a rocking
ratchet �in the absence of temporal asymmetry� than for a
flashing ratchet. The inverse is true for the generalized effi-
ciency. The potential amplitude being the same, the general-
ized efficiency is always less than the conventional effi-
ciency. A decreased asymmetry of the potential always
results in the reduction of both efficiencies. The temporal
asymmetry of an unbiased force has an opposite effect on the
conventional and generalized efficiencies: the former rises
and the latter drops as the positive signal component be-
comes shorter in time and larger in amplitude �see Fig. 3�.
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FIG. 4. The conventional �lines without markers� and general-
ized �lines with triangles� efficiencies for a rocking �solid lines� and
flashing �dashed lines� ratchets plotted versus the ratio V /kBT,
where V is the amplitude of the extremely asymmetric sawtooth
potential. The plots represent Eqs. �7� and �12� for the flashing
ratchet and Eqs. �20� and �22� with =1 and hence �=0 �i.e., with-
out the temporal asymmetry� for the rocking ratchet.
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